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Abstract-Transient thermosolutal opposing convection of a liquid-water mixture in a square cavity subject 
to horizontal temperature and concentration gradients is numerically investigated by a third-order upwind 
finite-difference scheme. Results are particularly presented to illustrate the effects of the Lewis and Grashof 
numbers on the evolution of flow patterns and the associated heat and mass transfer characteristics for 
solutally dominant situations. Results for Le = 100 clearly show the double-diflisive nature of the convec- 
tion. In the initial stage the flow is dominated by the interface velocities at the vertical side walls driven by 
the concentration gradients there. Later, the flow is governed by the thermal buoyancy. At a much later 
time. the solutal buoyancy set in inducing new recirculating cells along the side walls. These cells gradually 
grow and squeeze the thermally driven cell in the core region. Multilayer Row structure is finally formed. 
The counterrotating cells resulting from the opposing thermal and solutal buoyancies cause significant 

velocity. temperature and concentration oscillations with time at high Grashof numbers. 

1. INTRODUCTION 

RECENT interest in the study of thermosolutal con- 
vection in cavities has been mainly motivated by its 
importance in material processing, especially the 
growth of crystal from melt and vapor. The import- 
ance of the convective effects in crystal growing pro- 
ccsses by various growth methods was pointed out by 
Ostrach and his coworkers [I, 21, Langlois [3] and 
Rosenberger and his group [4-61. 

tain conditions multiple recirculating cells were noted 
in the flow, forming a layered flow structure. At high 
thermal and solutal Grashof numbers the flow is 
unsteady and transitional. 

Although cavity flow driven by thermal buoyancy 
alone has been the focus of many investigations, the 
thermosolutal convection in cavities has not yet 
received enough attention. Flow induced by the com- 
bined thermal and solutal buoyancies is expected to be 
much more complex than that in thermal convection. 
Various modes of flow are possible depending on the 
relative orientation of the two buoyancy forces, as 
suggested by Ostrach [7]. In what follows, we confine 
our attention on thermosolutal convection in cavities 
with the vertical side walls at different temperatures 
and concentrations. 

To delineate the characteristics of flliid flow and the 
associated heat and mass transfer, laboratory exper- 
iments were recently conducted to directly visualize 
the cell patterns in thermosolutal convection flows of 
liquid-water mixture at high Lewis numbers in shal- 
low and tall enclosures subject to the horizontal tem- 
perature and concentration gradients by Kamotani et 
al. [8], Ostrach et al. [9], Lee and Hyun [IO] and Wang 
et al. [I I, 121. Observation of the flow structure was 
conducted at steady or quasisteady state. Under cer- 

The complex flow characteristics in thermosolutal 
convection have also received attention from a number 
of numerical analyses. Ranganathan and Viskanta 
[ 131, Han and Kuehn [ 141, Benard et al. [ 151, Trevisan 
and Bejan [I61 and Hyun and Lee [17, 181 performed 
numerical calculations to explore the steady features 
of flow and the associated heat and mass transfer 
characteristics. Binary gas and liquid mixtures in 
enclosures with the aspect ratio widely different from 
unity have been treated. Effects of the Lewis number 
and buoyancy ratio were investigated. Lewis number 
was found to have an important bearing on the flow 
pattern. Multiple cellular flow was predicted by Han 
and Kuehn [14] at the Lewis number of 250. Oscil- 
latory flow and thermosolutal characteristics were 
considered by Krishnan [I91 in a square enclosure 
with the Prandtl and Schmidt numbers chosen as I 
and 3.162, respectively. The thermal and solutal buoy- 
ancies oppose each other but with equal strength. 
As the Rayleigh number is over 6.25 x IO’, successive 
bifurcations to oscillatory flow motion are noted. The 
flow follows a quasiperiodic route to chaos. 

Scale analysis of the problem for the limiting cases 
of heat transfer driven and mass transfer driven situ- 
ations in the boundary layer regime covering wide 
ranges of the Prandtl and Schmidt numbers was car- 
ried out by Bejan [20]. Based on their experimental 
observation for opposing flow, Jiang et al. [21] sug- 
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NOMENCLATURE 

D solutal diffusivity 
Y gravitational acceleration 
Gr,, Gr, Grashof numbers of heat and mass 

transfer 
H height of enclosure 
N buoyancy ratio 
Nu,, Nu local and average Nusselt numbers 
n time step 
P, pd dimensionless and dynamic pressures 
Pr, SC Prandtl and Schmidt numbers 
Ra,, Ra, thermal and solutal Rayleigh 

numbers 
Sh,, Sh local and average Sherwood 

numbers 
t, T dimensional and dimensionless time 
T”, T dimensional and dimensionless 

temperatures 
T;, T:! hot and cold wall temperatures 
u, I’ vertical and horizontal velocity 

components 
U, V dimensionless vertical and horizontal 

velocity components 

Wyi, W dimensional and dimensionless 
mass fractions of species 1 

WY”? VL high and low mass fractions of 
species I. 

Greek symbols 
a thermal diffusivity of the 

mixture 
/?,, ,!?, thermal and solutal volumetric 

expansion coefficients 
?I,, 6, thermal and solutal boundary layer 

thickness 
AT”, A W’f temperature and concentration 

differences, (T: - TE) and ( W tH - Wp,) 
I- concentration ratio 

i, rl 
kinematic viscosity of the mixture 
transformed coordinates for X and I’ 

P mass density of the mixture. 

Subscripts 
i,j node indices 
xv Y x- and y-directions. 

gested three possible flow patterns in a low aspect 
ratio enclosure. Depending on the magnitude of the 
buoyancy ratio, the flow may appear as multilayer, 
secondary flow or mixed flow. 

The literature just reviewed clearly indicates that 
the flow and heat and mass transfer characteristics 
are significantly affected by all the governing non- 
dimensional groups-the Prandtl number, Lewis 
number, thermal Grashof number, buoyancy ratio, 
aspect ratio, and the interface velocities at the side 
walls. Although the cell patterns at steady or statistical 
state have been reported, the processes of the cell 
formation evolved from the initially quiescent state 
remain unknown. Moreover, the details of the trans- 
port processes in the fluctuating flow resulting from 
high thermal and solutal buoyancies are still not fully 
understood. In an initial attempt to explore the de- 
tailed mechanisms of momentum, energy and species 
transfer in the thermosolutal convection in enclosure, 
Lin et al. [22] carried out a detailed numerical com- 
putation to simulate the temporal evolution of the 
velocity, temperature and concentration fields in a 
square enclosure containing binary gas mixture sub- 
ject to horizontal temperature and concentration 
gradients. 

In this study, we extend the above analysis [22] 
to unravel the detailed momentum, heat and mass 
transfer mechanisms in a buoyancy driven binary mix- 
ture of liquid-water in a square enclosure. Since Le is 
much greater than unity in the liquid mixture, thermal 
diffusion proceeds at a much higher speed than that 
of species diffusion and the thermal boundary layer is 

much thicker than the solutal boundary layer [9] with 
SJS, = (Le. IN]) “4. These unique features are 
expected to result in complex flow patterns especially 
in buoyancy opposing flows. Time-dependent numeri- 
cal simulation for two-dimensional opposing double- 
diffusive natural convection in a square enclosure is 
performed here with the Prandtl number fixed at 7.6, 
Lewis number varied from IO to 100, thermal Grashof 
number from IO3 to 2 x IO’, buoyancy ratio from - 5 
to - 15, and interface velocity parameter from 10 to 
50. Although the thermosolutal convection can be 
three-dimensional under certain conditions [21], in 
this initial attempt a two-dimensional model is used 
to facilitate the analysis. The use of a two-dimensional 
mode1 to predict three-dimensional thermal con- 
vection cavity flow in the unsteady and transitional 
regimes was found to be satisfactory by Schladow et 
al. [23] and Paolucci and Chenoweth [24]. The results 
obtained from this study are presented in the present 
article and the one that follows. This article con- 
centrates on the effects of the governing non- 
dimensional parameters on the processes of the cell 
formation and the associated heat and mass transfer 
characteristics. In Part II we focus on the bifurcation 
leading to the oscillatory flow motion at high Rayleigh 
numbers. Results from power spectrum analysis will 
be given to elucidate the fluctuating characteristics. 

2. MATHEMATICAL FORMULATION 

Under consideration is a binary liquid mixture con- 
fined in a square enclosure with its depth much larger 
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than its height and width so that the flow can be 
treated as two dimensional. The top and bottom 
boundaries of the enclosure are thermally well insu- 
lated and impermeable. Initially, the stationary liquid 
and confining walls are assumed to be at the same 
uniform temperature T,” and same uniform concen- 
tration WY,. At I = 0, the temperatures at right and 
left vertical walls are suddenly raised to a higher level 
rp + AT”/2 and lowered to a lower level Ty - A.T0/2, 
respectively, and maintained at these levels thereafter. 
Meanwhile, the concentrations of the fluid at the left 
and right vertical walls are hypothesized to be 
abruptly elevated to a higher value Wyi + A WY/2 and 
dropped to a lower value Wyi - A Wy/2, respectively. 
For the buoyancy opposing flow considered the left 
wall is maintained at a higher concentration, while the 
right wall is at a lower concentration. Accordingly, 
horizontal temperature and concentration gradients 
are imposed on the fluid, and the flow is then initiated 
and evolves under the action of the combined driving 
forces due to these gradients. The transient develop- 
ments of flow, temperature and concentration fields 
in the cavity can be predicted, with the Boussinesq 
approximations [7, 13, 251, by solving the following 
nondimensional governing differential equations. 

Continuity equation : 

X-direction momentum equation : 

+Gr,Pr’(T+NW). (2) 

Y-direction momentum equation : 

Energy equation : 

(3) 

aT aT dT a2T d2T 
jy+uax+var=dX’+$jyy (4) 

Species diffusion equation : 

aw aw aw 
dr+uax+var= gp (a2w+ gyLe. (5) 

In writing the above equations the following non- 
dimensional variables were introduced : 

X = x/H, Y = y/H, U = u/(a/H) 

V = v/(u/H), P = pd/(pa2/H2), r = (/(HZ/a) 

Pr = v/u, T = (To- Tp)/AT”, SC = v/D 

W = ( W’f - Wc)/A WY, Le = Sc/Pr = u/D 

N = Ps*AW~/j,*ATo, Gr, =gj3,H3*ATo/v2 

Gr, = gpsH’* A Wy/v2. (6) 

The initial and boundary conditions for the flow are 

whenr<O: 

U= V=P=O, T= W=O 

whenr>O: 

at 

Y=O, T=-0.5; W=-0.5 

v= -;.;.g; u=o, 

at 

Y=l, T=OS; W=O.5; 

v= -1 I aw 
Le’T-l’dYi 

u = 0, 

Ua) 

G’b) 

(7c) 

at 

a7- aw 
X=0 and 1, ax=ax= U= V=O. (7d) 

The interface velocities of the binary mixture induced 
by the mass diffusion at the side walls are specified in 
equations (7b) and (7~) with I- = (I - Wp,)/ 
(Wf, - WY,). It is relatively important during the 
early transient period [26]. 

It is noticed that the volumetric expansion 
coefficient due to temperature change, defined as 
B, = -uIP)(~PI~TO)~~~, is normally positive, but the 
volumetric expansion coefficient for concentration 
change, defined as ps = -(]/~)(@/a WY),;, can be 
either positive or negative. In this study & is taken to 
be negative, that is, component 1 is assumed to be 
heavier than component 2 in the mixture 
(ap/aWy > 0). As a result, the buoyancy ratio N is 
always negative. To facilitate the analysis, the thermo- 
physical properties of the mixture are considered 
to be constant except the density in the buoyancy 
terms [7, 131. This simplification is appropriate when 
both components in the mixture have comparable 
molecular weights or when the mixture is dilute [271. 

The transient local Nusselt and Sherwood numbers 
on the vertical walls can be evaluated by these equa- 
tions 

(aT/a Y) r= 0 for right wall 

N”-r = (aria y) r= , for left wall (8) 

and 

cawwr=o for right wall 

‘h-T = (a w/a y) y=, for left wall ’ (9) 

Integrating the results for local Nusselt and Sherwood 
numbers along a given wall yields the results for the 
average Nusselt and Sherwood numbers for that wall. 
For instance, at the right wail 
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(10) 
v-v 
,-+A(V”)-~~~~‘V”=O (12) 

and 

sh = ’ [(aW/~X),_o]dY. 
s 

(11) 
0 

3. SOLUTION METHOD 

Since the flow governed by equations (l)-(5) is 
known to be parabolic in time but elliptic in space, 
the solution for the problem can only be marched in 
time, and iterative procedures must be employed to 
obtain the solution in the spatial domain. The pro- 
jection method developed by Chorin [28] and Temam 
[29] was chosen to numerically solve the time-depen- 
dent governing equations in their primitive form with 
three interlacing staggered grids, respectively, for the 
horizontal velocity component, vertical velocity com- 
ponent, and all scalar variables. This fractional-step 
method consists of two steps. First, a provisional 
value is explicitly computed for velocity field ignoring 
the pressure gradient such as 

where A(V”) is the convection term, A(V”) = (V * V)V. 
Then, the provisional velocity field V* is corrected by 
including the pressure effect and by enforcing the mass 
conservation at time step n + I, 

V”f I -v* 

AT 
t-VP n+l =o (13) 

and 

v*v n+ I = 0, (14) 

Substituting equation (14) into equation (13) yields 
the Poisson equation for pressure, 

V’P !#+I _ - ;v.v*. (15) 

In discretizing the above equations, centered 
difference is used to approximate all the derivatives 
except the convective terms. To enhance numerical 
stability and to yield accurate results, a third-order 
upwind scheme developed by Kawamura et al. [30] is 

Table I. Comparison with the solution from different authors for the limiting case of Pr = 0.7 1, 
Ra, = IO' 

I$L VW,. ulna, N&l, NhWX 
x y Y X Nu, X X 

Bench mark 16.75 
solutiont 0.547,0.151 

‘Exact’ 
solutionf 

41 x417 
/I, = I. 10 
/Iv = 1.10 

16.82 
0.553. 0.155 

41 x41’i 
/Ir = 1.03 
pv = 1.03 

16.758 64.21 219.52 8.81 I 0.9731 17.901 
0.554,0.146 0.854 0.0323 0.9983 0.0164 

41 x411 
pr = 1.06 
pv = 1.06 

16.757 64.35 220. I7 8.830 0.9659 17.81 I 
0.541.0.152 0.863 0.0365 0.991 I 0.0345 

51 x 517 
p; = 1.06 
& = 1.06 

61 x611 
/IT = 1.06 
/iv = 1.08 

16.765 64.45 220.65 8.828 0.9674 17.704 
0.543, 0.152 0.856 0.0422 0.993 I 0.0423 

16.760 64.65 220.38 8.825 0.9876 17.661 
0.546.0.149 0.854 0.0398 0.9971 0.0382 

64.63 
0.850 

64.91 
0.849 

64.74 
0.87 I 

219.36 
0.0379 

220.80 
0.038 I 

8.817 0.989 
I .o 

8.822 - 

17.925 
0.0378 

22 I .06 8.857 0.9510 18.112 
0.042 1 0.9962 0.0376 

z]-ax the maximum absolute value of the stream function (together with its location, X, Y) ; 
max the maximum vertrcal velocrty on the vertical mid-plane of the cavity (together with its 
location, X) ; 

VIM the maximum vertical velocity on the horizontal mid-plane of the cavity (together with 
its location, Y) ; 

Nu, the average Nusselt number on the vertical boundary at X = 0; 
NkX the maximum value of the local Nusselt number on the boundary at X = 0 (together 

with its location, Y) ; 
WM the minimum value of the local Nusselt number on the boundary at X = 0 (together 

with its location, Y). 
t Bench mark solution from de Vahl Davis [34]. 
$ ‘Exact’ solution from Chenoweth and Paolucci [35]. 
7 Present solution. 
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V 

FIG. I. Grid-independence tests for (a) time series of the 
average Nusselt and Sherwood numbers and (b) U and 
V profiles at their respective mid-planes at T = 0.25 for the 

thermosolutai cavity convection with Pr = 7.6, Le = 100. 
Gr, = 2x 105, N = -5 and r = 50. 

employed to discretize these convective terms. For 
instance, in the X-direction momentum equation 

au ( > u’ax i,, = ~i.j~~I+Lj-2~i+L, -+9u;.,- IOU,+,,, 

+2U,- ?.,)/6AX, for U,,, 3 0 

Ol- 

ui.j(-2ui+2.,+ lOUi+ I., -9Ui,j+2Ui- B.j-Ui-z,j)/ 

6AX, for U,, < 0. (16) 

In order to accurately resolve the steep velocity, 
temperature and concentration gradients in the wall 
boundary layers at high thermal and solutal Rayleigh 
numbers, a nonuniform grid system is required. 
Instead of employing the nonuniform grid directly, 
we transformed the nonuniform AX, and AY, in the 
finite difference equations into a uniform grid using 
orthogonal transformation along two coordinates 
with the same transformation function [3l] 

5 = 1/2+1/2*1n[(~,+2X-1)/(/I,+2X+1)1/ 

n = 1/2+1/2*In[(&+2Y-l)/(~~~-2Y+l)]/ 

In [(I$+ IMP,.- 111 (17b) 
where /lv and & are stretching parameters for adjust- 
ing the grid nonuniformity. To further improve the 
numerical simulation, we adopted the following cen- 
tered finite-difference representation for the first and 
second derivatives developed by Kalnay de Rivas [32]. 

h+,-A-1 
2A.r(dX/Wi(l+ l/6*4.,) 

(184 

dX 

i( > 
z ,-,,? 

where 6,,, = (A<)‘(d3X/d<‘),/(dX/d<). These approxi- 
mations are particularly useful when large grid 
variation is used. The above approximation has a 
truncation error of O(A<‘) for arbitrary mesh trans- 
formation in problems of boundary layer character. 
The same procedure may be done along the Y-coor- 
dinate. For the convection terms, the improved cent- 
ered difference in equation (l8a) is only applied to 
the boundary nodes in normal direction where the 
velocity is low due to the presence of the solid bound- 
aries. These improved finite-difference approxi- 
mations, equations (ISa) and (l8b), combining with 
the third-order upwind convective scheme, equation 
(I 6) for the interior nodes yield very accurate results. 

Time advancement may be done either implicitly or 
explicitly. The first-order Euler explicit scheme was 
employed since it was easy to implement. It has a much 
lower computational cost per timestep, and requires 
much less computer memory allocation than any equi- 
valent implicit implementation. We also found that 
the first-order scheme was sufficiently accurate to 
resolve the smallest physical timescale. The stability 
of the scheme limited by the requirement that the 
Courant number be less than unity [3l] was found to 
be governed by the smallest grid spacing normal to 
the confining walls. The timestep selected to comply 
with the above stability limitation was smaller than 
that required to resolve the largest frequency that 
appears in the flow considered. 

The sequence of numerical operation is as follows : 

(I) explicitly calculate V* from equation (l2), 
(2) solve the pressure equation for P"+ ’ by the 

modified strong implicit procedure (MSIP) 
method developed by Schneider and Zedan 
[331, 

(3) explicitly calculate the desired velocity field at 
the new time step, V”+ ‘, from equation (I 3). 
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Streamline -.08( .Ol)O 

.5 

.5 

Streamline -.01(.14)1.29 

-3 .5 

Isotherms .45(-A)-.45 13othexms .45(-A)-.45 

-.5 .5 

-. 5 

-. 5 

Iso-concentration line Ieo-concentration line 
.45(-A)-.45 .45(-.l)-.45 

(a) (b) 

FIG. 2. Time evolution of flow patterns, isotherms and iso-concentration lines for opposing Row for 
Pr = 7.6, Le = 10, Gr, = IO’, N = -5 and r = 50 at (a) 5 = 0.00001, (b) r = 0.0003, (c) r = 0.003. (d) 

5 = 0.01, (e) r = 0.05, (f) T = 0.08. 

The energy and species diffusion equations were 
solved by the simple explicit method. 

To verify the proposed numerical algorithm, a series 
of stringent numerical tests were performed to ensure 
the solutions were accurate and grid-independent. 
First, the present numerical algorithm was applied to 
the limited cases of pure thermal convection of air 
in a square enclosure. Results computed by 41 x41, 
51 x 51 and 61 x 61 grids with different fl.r and /I, for a 
typical case of Pr = 0.71 and Ra, = lo6 are compared 
with the steady state benchmark solution of de Vahl 
Davis [34] and the ‘Exact solution’ of Chenoweth 

and Paolucci [35] in Table 1. Excellent agreement is 
observed. Next, the predicted transient pure thermal 
convection (N = 0) in a square cavity at very high 
Rayleigh numbers is compared with the experimental 
and numerical results of Patterson and Armfield [36] 
and Schladow ef al. [23]. Our predicted temperature 
variation with time at a location inside the wall bound- 
ary layer for Pr = 7.5 and Ra, = 3.26 x 10’ is in good 
agreement with the measured data. Moreover, the 
vertical velocity and temperature profiles at 20 s after 
the initiation of the transient at the midheight of the 
cavity for Ro, = 2 x lo9 computed from the present 
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FIG. 2-Cominued. 

method with the 61 x 61 grid agree excellently with latory flow (Fig. l(a)). But, this phase error is not 
those predicted from the second-order quadratic expected to significantly affect the essential charac- 
upwind scheme (QUICK) by Schladow et al. [23] with teristics of the flow at large 7, such as the amplitude 
the 90 x 90 grid. Then, the temporal variations of the and frequencies of the oscillations. Finally, results 
calculated average Nusselt and Sherwood numbers from the time-interval test are examined. Halving the 
along with the vertical and horizontal velocity profiles time interval from 10m6 to 5 x lo-’ is found to cause 
at x = 0.5 andy = 0.5 at 7 = 0.25 from three different unnoticeable changes in the results. Through these 
grids for a typical case of thermosolutal convection program tests, the 41 x41 grid with 8X = & = 1.06 
with Pr = 7.6, Lx = 100, Gr, = 2 x lo’, N = -5, and A7 = 10m6 is considered to be good enough for 
I = 50 are shown in Fig. 1. Good agreement is again numerically exploring the major characteristics of 
noted by contrasting the predictions from those grids. the transient buoyancy induced flow and heat and 
It is recognized, however, that some phase error does mass transfer in a square enclosure to be studied 
exist in numerically calculating the transient oscil- here. 
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-r= 0.08 

Streamline -5.4( .94)3 Streamline -4.85(.52)-.2 

Isotherms .45(-A)-.45 

Ieo-concentration line 
.45( -A)-.45 

(e) 

4. RESULTS AND DISCUSSION over the thermal buoyancy (INI > 1). In the actual 

FIG. 2 

Isotherms .45(-.l)-.45 

ho-concentration line 
.45(-A)-.45 

(f) 

Conrinued. 

The foregoing analysis indicates that the ther- 
mosolutal convection in a square enclosure is 
governed by five nondimensional groups-the Prandtl 
number Pr, thermal Grashof number Gr,, Lewis num- 
ber Le, buoyancy ratio N, and concentration ratio 
I-. While computations can be carried out for any 
combination of these parameters, the objective here is 
to present a sample of results to illustrate the effects 
of these parameters on the cell formation processes 
and heat and mass transfer characteristics. In particu- 
lar, we focus on the convection in a liquid-water mix- 
ture (Pr = 7.6) with the solutal buoyancy dominant 

computations Le is varied from IO to 100, Gr, from 
IO3 to IO’, N from -5 to - IS, and I- from 10 to 50. 

4. I. Results for Le = IO 
The transient development of the flow, temperature 

and concentration fields is illustrated in Fig. 2 for a 
typical case with Pr = 7.6, Le = 10, Gr, = 105, 
N = -5 and r = 50 in terms of streamlines, iso- 
therms and iso-concentration lines at selected time 
instants. These results indicate that initially at small 
7, a uniform flow from the high concentration wall at 
the left to the low concentration wall at the right is 
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induced by the high interface velocities at these walls 
because of the high concentration gradients existing 
there immediately after the sudden changes in wall 
concentrations. Later, the thermal buoyancy starts to 
exhibit some influences. Then the upward thermal 
buoyancy near the left wall and the downward thermal 
buoyancy near the right wall result in the cellular Row 
pattern at r = 0.0003 (Fig. 2(b)) with a primary cell 
moving clockwise along the cavity walls and two sec- 
ondary cells contained within it. Close inspection of 
the isotherms and iso-concentration lines in Fig. 2(b) 
reveals that the temperature field develops at a faster 
rate since the Lewis number is much larger than unity 
(Le = IO). In fact, at T = 0.0003 the high and low 
concentration fluids at the vertical walls have not 
diffused into the fluid in the cavity. Besides, in the 
initial transient (r < 0.0003j all the isotherms and iso- 
concentration lines are parallel with the vertical walls. 
suggesting that the heat and mass transfer in the flow is 
diffusion-dominant because flow is at a low velocity 
in this period. At a larger T the mass diffusion begins 
to show profound effects. Figure 2(c) shows that a highly 
elongated cell driven by the downward solutal buoy- 
ancy is formed adjacent to the left wall. Similarly. 
adjacent to the right wall another analogous cell is 
formed. These solutally driven cells gradually grow 
and squeeze the original cells driven by the thermal 
buoyancy. As time proceeds, mass diffusion continues 
and the solutally driven cells protrude towards the 
opposite walls, and the thermally driven cells shrink 
further, as evident from the results in Figs. 2(d) and 
(e). These complex flow patterns result in a significant 
distortion in the isotherms. Note that the secondary 
cells induced by the thermal buoyancy disappear when 
the mass diffusion driven cells grow to a certain degree 
(Figs. 2(e) and (f)). The thermally driven cells finally 
disappear at a larger T and the flow is mainly driven 
by the solutal buoyancy. Based on the above obser- 
vation, it can be stated that the multilayer flow struc- 
ture of the double-diffusive convection for this case 
only exists over a certain period during the entire flow 
evolution. Examining the steady isotherms and iso- 
concentration lines dictates that heat transfer in the 
flow is poor and stable solutal stratification appears 
in the core region. 

A unique feature of the natural convection driven 
by the combined buoyancy forces is the presence of 
the interface velocity at the vertical walls due to the 
existence of the concentration gradients there. Figure 
3 presents the distributions of the interface velocity 
along the right wall for several time insiants for the 
typical case. At small r the interface velocity is nearly 
uniform. Later, the interface velocity becomes larger 
in the lower portion of the wall due to the larger 
concentration gradient there. A similar situation is 
observed for the interface velocity at the left vertical 
wall. The unsteady distributions of the horizontal vel- 
ocity along a vertical plane right between the vertical 
walls (Y = 0.5) are shown in Fig. 4. The results clearly 
suggest that the flow accelerates in the initial period 

1 

x 0.5 

0 
0 -0.05 -0.1 -0.15 

V 

FG. 3. Transient distributions of the interfacial velocity 
along the right wall for Pr = 7.6. Le = IO, Gr, = IO”. 

N= -5andr=SO 

x 

1 

0.5 

0 
80 40 0 -40 -80 

V 
FIG. 4. Transient horizontal velocity profiles at Y = 0.5 for 

Pr = 7.6. Lc = 10. Gr, = IO’. N = -5 and I- = 50. 

up to T = 0.01 attaining a maximum velocity. The 
appearance of the solutally-driven cells for T > 0.01 
and the disappearance of the thermally driven cells for 
r >, 0.2 are clearly noted. A similar phenomenon is 
seen for the vertical velocity distributions along a 
horizontal plane at the mid-height of the enclosure. 

The time variations of the velocity components at 
selected locations indicate that substantial changes 
in the flow occur for r < 0.03. The temperature and 
concentration changes with time are rather mild. The 
unsteady variations of the average Nusselt and Sher- 
wood numbers show that Sh is much larger than Nu. 
Substantial decreases in Nu and % take place at small 
T. 

4.2. Resulls for Le = 100 
As the Lewis number is raised to 100, the double- 

diffusive nature of the thermosolutal convection is 
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FIG. 5. Time evolution of flow patterns, isotherms and iso-concentration lines for Pr = 7.6, Le = 100, 
Gr, = IO’, N = -5 and I- = 50 at (a) r = 0.00002, (b) r = 0.0002, (c) T = 0.05, (d) r = 0.1, (e) r = 0.2, 

(f) r = 0.6. 

more pronounced. First, we examine low Grashof near the bottom comers (Fig. 5(b)). Up to r = 0.02, the 
number thermosolutal convection with Le = 100. Fig- flow is mainly driven by the thermal buoyancy since 
ure 5 illustrates the flow formation processes and the the concentration gradients are still confined in 
associated temperature and concentration fields for regions relatively close to the side walls. The solutal 
Gr, = IO3 and N = -5. Again, immediately after the buoyancy begins to exert important effects at T = 0.05 
transient is initiated the flow is driven by the hori- outside the thermally driven cell. Figure 5(c) shows 
zontal interface velocities at the side walls resulting in that four cells are induced in the comer regions, one 
a horizontal left to right flow field (Fig. S(a)). Later, at each corner. With the continuing action of the 
the effects of thermal buoyancy set off. The upward solutal buoyancy on the flow near the side walls as z 
thermal buoyancy near the left wall and the downward increases, the cells near the top left and bottom right 
thermal buoyancy near the right wall gresttly distort comers grow. Meanwhile, the cell induced by the ther- 
the velocity field. A pair of recirculating cells appears mal buoyancy in the core region dwindles. In fact, 



Convection of a liquid-water mixture-l 

StreWXllbe -.02(.53)4.75 Streamline -.1(.36)3.15 

ho-concantrmtion Iin8 Iso-concentrmtlon line 
.45(-A)-.45 .45(-A)-.45 

cc> (d) 

FIG. S-Continued. 

at z = 0.6 the enclosure is mainly occupied by the 
solutally induced cells. It is of interest to note in Fig. 
5(f) that the solutal buoyancy is strong enough to 
induce a primary cell circulating along the entire 

- enclosure walls. 
The effects of the Grashof number are now 

discussed. The flow formation and the associated tem- 
perature and concentration development for 
Gr, = IO’ and N = - 5 are presented in Fig. 6. Note 
that at this higher Gr, the solutal Grashof number is 
also higher because Gr, = Gr; N. As the results for 
Gr, = lo’, the flow at Gr, = 10’ is initially driven by 

the horizontal interface velocities at the side walls and 
then by the thermal buoyancy. The results in Fig. 6, 
when contrasted with those in Fig. 5, indicate that 
raising the thermal Grashof number causes an earlier 
appearance of the solutally driven cells (Fig. 6(a)). Fur- 
thermore, the thermally driven cell moving clock- 
wisely in the core region is squeezed to a small size by 
the solutally driven cells moving counterclockwisely. 
Due to the opposing thermal and solutal buoyancies, 
the thermal and solutal-driven cells are counter- 
rotating. To balance these counterrotating cells, 
secondary cells are formed, one above and one below 
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the thermally driven cell (Fig. 6(d)). The multilayer 
flow structure is thus produced by these complicated 
thermal-solutal interactions. 

The counterrotating flow induced by the opposing 
buoyancies at a high Lewis number fluid is prone 
to instability. This is termed as the thermosolutal 
instability by Jiang et ul. [2l]. In fact, at Gr, = IO’ the 
flow clearly shows some weak unstable phenomenon, 
as is clear from the time variations of the horizontal 
and vertical velocities at a location inside the solutal 
boundary layer near the left wall shown in Fig. 7. 
Significant fluctuation is noted for the velocity com- 
ponent normal to the wall. The temperature and con- 

centration variations with time given in Fig. 8 show 
little fluctuation except in the initial stage at small 
7, so are the variations of the average Nusselt and 
Sherwood numbers (Fig. 9). As the Grashof numbers 
are further raised, significant fluctuations in U, V, T 
and W will result. Fluctuating characteristics in high 
Grashof number flow with Le = 100 will be the topics 
in the second part of this article. 

According to equations (7b) and (7c), the con- 
centration ratio f affects the interface velocities, 
which in turn influences the transport processes in the 
flow. Examining the results obtained in a separate 
computation for the transient hydrodynamic, thermal 
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FIG. 6. Time evolution of flow patterns, isotherms and iso-concentration lines for Pr = 7.6. LCJ = 100. 
Gr, = 10’. N = -5 and r = 50 at (a) z = 0.01. (b) T = 0.1. (c) T = 0.2, (d) T = 0.9. 

and solutal development for a lower concentration 
ratio of r = 10 and at Gr, = 105, we noted that at the 
lower concentration ratio the interface velocities are 
larger, causing a delay in the first appearance of the 
cellular flow. The larger interface velocities is found 
to influence the flow near the vertical walls during the 
initial transient (7 < 0.002). Away from the vertical 
walls and after the initial transient, the effects of r are 
unnoticeable. 

The predicted time evolution of velocity, tem- 
perature and concentration fields for a higher buoy- 
ancy ratio of N = - I5 and with Gr, = IO’ indicates 
that in the initial period (7 < 0.002) a raise in N from 
- 5 to - 15 has little effect since at this small 7 the 
concentration gradient remains confined in an 

extremely thin region adjacent to the vertical walls, 
irrespective of the magnitude of N. Later, we note that 
the recirculating flow induced by the solutal buoyancy 
appears earlier for the case with N = - I5 and the 
thermally driven cell is squeezed to a smaller size. Like 
the increase in the Grashof number, a rise in the 
buoyancy ratio results in more nonuniform and higher 
interface velocities. Also, the changes in the velocity 
profiles are more significant and a higher Sherwood 
number results. 

4.3. Heat and mass transfer coefficients 
Variations of heat and mass transfer coefficients 

with the governing nondimensional groups are impor- 
tant in the design of heat and mass transfer equip- 
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ments. The predicted steady average Nusselt and 
Sherwood numbers for various cases chosen in this 
study indicate that for Le = 1, % is equal to a and 
both increase with Gr,. For fixed Gr,, N and T, Nu 
decreases with an increase in Le, while the reverse is 
the case for Sk For LP = 100, % is smaller than Sh 
and both increase with Gr A decrease in I- causes a -” 
higher z but a lower Sh. Nu is lower but sh is higher 
for a larger buoyancy ratio. These complex relations 
between the % and Sh and the governing non- 
dimensional groups for Le = 100 apparently result 
from the complex flow patterns discussed above. The 
following empirical correlations are proposed to cor- 
relate the results : 

Nu = 0.112[0.9931n’ (LET)-6.829In(Le) 

+ 13.606]Gr~31NI-0.8 (19) 

and 

sh = 0.011 [O.OOOl I 12Le3-0.0197Le’ 

+ l.l493Le+ 12.9]Gr~2”s]N]0~8. (20) 

5. CONCLUDING REMARKS 

Through a detailed numerical simulation of the 
transient thermosolutal convection in a square cavity 
particularly for a high Lewis number liquid-water 
mixture, some special features of the velocity, tem- 
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FIG. 7. Time history of L/and Vat the location (A’. Y) = (0.4729.0.9944) for Pr = 7.6, Le = 100, Gr, = 10’. 
N= -5andr=SO. 
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FIG. 8. Time history of Tand W at the locations I, 2 and 3 for Pr = 7.6, Le = 100, Gr, = IO’, N = -5 
and r = 50. 

perature and concentration development and the 
associated heat and mass transfer characteristics are 
unveiled. In a high Lewis number fluid subject to the 
opposing buoyancies considered here, the flow is first 
driven by the interface velocities and then by the ther- 
mal buoyancy up to a certain period. After that, the 
solutal buoyancy induces new recirculating cells near 
the vertical walls. With a further increase in time these 
solutally driven cells grow and squeeze the thermally 
driven cells. At Le = 100, a multilayer flow structure is 
formed. These complex flow evolutions clearly exhibit 

the double-diffusive nature of the buoyancy driven 
flow in a high Lewis number fluid. 

Significant velocity, temperature and concentra- 
tion variations with time appear also in a high Lewis 
number fluid at a high Grashof number. A further in- 
crease in the Lewis or Grashof number may lead to 
the flow bifurcation and the flow may become three- 
dimensional. Further research is needed in this 
area. 

Natural convective transfer processes in an enclos- 
ure are sensitive to the geometry of the enclosure. An 
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FIG. 9. Time history of average Nusselt and Sherwood numbers at Y = 0 and Y = I for Pr = 7.6, Le = 100, 
Gr,= lO”.N= -5andF=50. 

extension of the present study to shallow and tall 
enclosures is of intcrcst. 
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